High-Order Staggered Finite Difference Methods for Maxwell’s Equations in Dispersive Media

نویسندگان

  • V. A. Bokil
  • N. L. Gibson
چکیده

We study the stability properties of, and the phase error present in, several higher order (in space) staggered finite difference schemes for Maxwell’s equations coupled with a Debye or Lorentz polarization model. We present a novel expansion of the symbol of finite difference approximations, of arbitrary (even) order, of the first order spatial derivative operator. This alternative representation allows the derivation of a concise formula for the numerical dispersion relation for all (even) order schemes applied to each model, including the limiting (infinite order) case. We further derive a closed-form analytical stability condition for these schemes as a function of the order of the method. Using representative numerical values for the physical parameters, we validate the stability criterion while quantifying numerical dissipation. Lastly, we demonstrate the effect that the spatial discretization order, and the corresponding stability constraint, has on the dispersion error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Explicit Symplectic Scheme that Optimizes the Dispersion-Relation Equation of the Maxwell’s Equations

In this paper an explicit finite-difference time-domain scheme for solving the Maxwell’s equations in non-staggered grids is presented. The proposed scheme for solving the Faraday’s and Ampère’s equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell’s equations are also preserved discr...

متن کامل

General Closed-Form PML Constitutive Tensors to Match Arbitrary Bianisotropic and Dispersive Linear Media

The perfectly matched layer (PML) constitutive tensors that match more general linear media presenting bianisotropic and dispersive behavior are obtained for single interface problems and for two-dimensional (2-D) and three-dimensional (3-D) corner regions. The derivation is based on the analytic continuation of Maxwell’s equations to a complex variables domain. The formulation is Maxwellian so...

متن کامل

Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media

This study is concerned with the solution of the time domain Maxwell’s equations in a dispersive propagation media by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the media. The resulting system of equations is solved using a centered flux discontinuous Galerkin formulation for the discretization in space and a second order ...

متن کامل

Superconvergence analysis for Maxwell's equations in dispersive media

In this paper, we consider the time dependent Maxwell’s equations in dispersive media on a bounded three-dimensional domain. Global superconvergence is obtained for semi-discrete mixed finite element methods for three most popular dispersive media models: the isotropic cold plasma, the one-pole Debye medium, and the two-pole Lorentz medium. Global superconvergence for a standard finite element ...

متن کامل

Unified Analysis of Time Domain Mixed Finite Element Methods for Maxwell’s Equations in Dispersive Media

In this paper, we consider the time dependent Maxwell’s equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Nédélec space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010